Skip to main content Site map

Civil Avionics Systems 2nd edition


Civil Avionics Systems 2nd edition

Hardback by Moir, Ian (Independent Consultant); Seabridge, Allan (BAE Systems, UK); Jukes, Malcolm (Smiths Group, Cheltenham, UK); Belobaba, Peter (MIT); Cooper, Jonathan (University of Liverpool, UK)

Civil Avionics Systems

WAS £97.95   SAVE £14.69

£83.26

ISBN:
9781118341803
Publication Date:
11 Oct 2013
Edition/language:
2nd edition / English
Publisher:
John Wiley & Sons Inc
Pages:
608 pages
Format:
Hardback
For delivery:
Estimated despatch 9 - 17 May 2024
Civil Avionics Systems

Description

Civil Avionics Systems, Second Edition, is an updated and in-depth practical guide to integrated avionic systems as applied to civil aircraft and this new edition has been expanded to include the latest developments in modern avionics. It describes avionic systems and potential developments in the field to help educate students and practitioners in the process of designing, building and operating modern aircraft in the contemporary aviation system. Integration is a predominant theme of this book, as aircraft systems are becoming more integrated and complex, but so is the economic, political and technical environment in which they operate. Key features: • Content is based on many years of practical industrial experience by the authors on a range of civil and military projects • Generates an understanding of the integration and interconnectedness of systems in modern complex aircraft • Updated contents in the light of latest applications • Substantial new material has been included in the areas of avionics technology, software and system safety The authors are all recognised experts in the field and between them have over 140 years' experience in the aircraft industry. Their direct and accessible style ensures that Civil Avionics Systems, Second Edition is a must-have guide to integrated avionic systems in modern aircraft for those in the aerospace industry and academia.

Contents

About the Authors xix Series Preface xxi Preface to Second Edition xxii Preface to First Edition xxiii Acknowledgements xxv List of Abbreviations xxvi 1 Introduction 1 1.1 Advances since 2003 1 1.2 Comparison of Boeing and Airbus Solutions 2 1.3 Outline of Book Content 2 1.3.1 Enabling Technologies and Techniques 3 1.3.2 Functional Avionics Systems 4 1.3.3 The Flight Deck 4 1.4 The Appendices 4 2 Avionics Technology 7 2.1 Introduction 7 2.2 Avionics Technology Evolution 8 2.2.1 Introduction 8 References 77 3 Data Bus Networks 79 3.1 Introduction 79 3.2 Digital Data Bus Basics 80 References 118 4 System Safety 119 4.1 Introduction 119 4.2 Flight Safety 120 4.2.1 Introduction 120 4.2.2 Flight Safety Overview 120 4.2.3 Accident Causes 124 References 157 5 Avionics Architectures 159 5.1 Introduction 159 5.2 Avionics Architecture Evolution 159 5.2.1 Overview of Architecture Evolution 159 5.2.2 Distributed Analogue Architecture 161 5.2.3 Distributed Digital Architecture 162 5.2.4 Federated Digital Architecture 164 5.2.5 Integrated Modular Avionics 166 5.2.6 Open System Standards 169 5.3 Avionic Systems Domains 169 5.3.1 The Aircraft as a System of Systems 169 5.3.2 ATA Classification 171 5.4 Avionics Architecture Examples 172 5.4.1 The Manifestations of IMA 172 5.4.2 The Airbus A320 Avionics Architecture 173 5.4.3 The Boeing 777 Avionics Architecture 174 5.4.4 Honeywell EPIC Architecture 179 5.4.5 The Airbus A380 and A 350 180 5.4.6 The Boeing 787 184 5.5 IMA Design Principles 188 5.6 The Virtual System 189 5.6.1 Introduction to Virtual Mapping 189 5.6.2 Implementation Example: Airbus A 380 191 5.6.3 Implementation Example: Boeing 787 193 5.7 Partitioning 194 5.8 IMA Fault Tolerance 195 5.8.1 Fault Tolerance Principles 195 5.8.2 Data Integrity 196 5.8.3 Platform Health Management 197 5.9 Network Definition 197 5.10 Certification 198 5.10.1 IMA Certification Philosophy 198 5.10.2 Platform Acceptance 199 5.10.3 Hosted Function Acceptance 200 5.10.4 Cost of Change 200 5.10.5 Configuration Management 201 5.11 IMA Standards 201 References 203 6 Systems Development 205 6.1 Introduction 205 6.1.1 Systems Design 205 6.1.2 Development Processes 206 6.2 System Design Guidelines 206 6.2.1 Key Agencies and Documentation 206 6.2.2 Design Guidelines and Certification Techniques 207 6.2.3 Guidelines for Development of Civil Aircraft and Systems - SAE ARP 4754A 208 6.2.4 Guidelines and Methods for Conducting the Safety Assessment - SAE ARP 4761 208 6.2.5 Software Considerations - RTCA DO-178B 209 6.2.6 Hardware Development - RTCA DO- 254 209 6.2.7 Integrated Modular Avionics - RTCA DO- 297 209 6.2.8 Equivalence of US and European Specifications 210 6.3 Interrelationship of Design Processes 210 6.3.1 Functional Hazard Assessment (FHA) 210 6.3.2 Preliminary System Safety Assessment (PSSA) 212 6.3.3 System Safety Assessment (SSA) 213 6.3.4 Common Cause Analysis (CCA) 213 6.4 Requirements Capture and Analysis 213 6.4.1 Top-Down Approach 214 6.4.2 Bottom-Up Approach 214 6.4.3 Requirements Capture Example 215 6.5 Development Processes 217 6.5.1 The Product Life-Cycle 217 6.5.2 Concept Phase 218 6.5.3 Definition Phase 219 6.5.4 Design Phase 220 6.5.5 Build Phase 221 6.5.6 Test Phase 222 6.5.7 Operate Phase 223 6.5.8 Disposal or Refurbish Phase 223 6.6 Development Programme 224 6.6.1 Typical Development Programme 224 6.6.2 'V' Diagram 226 6.7 Extended Operations Requirements 226 6.7.1 ETOPS Requirements 226 6.7.2 Equipment Requirements 228 6.8 ARINC Specifications and Design Rigour 229 6.8.1 ARINC 400 Series 229 6.8.2 ARINC 500 Series 229 6.8.3 ARINC 600 Series 229 6.8.4 ARINC 700 Series 230 6.8.5 ARINC 800 Series 230 6.8.6 ARINC 900 Series 230 6.9 Interface Control 231 6.9.1 Introduction 231 6.9.2 Interface Control Document 231 6.9.3 Aircraft-Level Data-Bus Data 231 6.9.4 System Internal Data-Bus Data 233 6.9.5 Internal System Input/Output Data 233 6.9.6 Fuel Component Interfaces 233 References 233 7 Electrical Systems 235 7.1 Electrical Systems Overview 235 7.1.1 Introduction 235 7.1.2 Wider Development Trends 236 7.1.3 Typical Civil Electrical System 238 7.2 Electrical Power Generation 239 7.2.1 Generator Control Function 239 7.2.2 DC System Generation Control 240 7.2.3 AC Power Generation Control 242 7.3 Power Distribution and Protection 248 7.3.1 Electrical Power System Layers 248 7.3.2 Electrical System Configuration 248 7.3.3 Electrical Load Protection 250 7.3.4 Power Conversion 253 7.4 Emergency Power 254 7.4.1 Ram Air Turbine 255 7.4.2 Permanent Magnet Generators 256 7.4.3 Backup Systems 257 7.4.4 Batteries 258 7.5 Power System Architectures 259 7.5.1 Airbus A320 Electrical System 259 7.5.2 Boeing 777 Electrical System 261 7.5.3 Airbus A380 Electrical System 264 7.5.4 Boeing 787 Electrical System 265 7.6 Aircraft Wiring 268 7.6.1 Aircraft Breaks 269 7.6.2 Wiring Bundle Definition 270 7.6.3 Wiring Routing 271 7.6.4 Wiring Sizing 272 7.6.5 Aircraft Electrical Signal Types 272 7.6.6 Electrical Segregation 274 7.6.7 The Nature of Aircraft Wiring and Connectors 274 7.6.8 Used of Twisted Pairs and Quads 275 7.7 Electrical Installation 276 7.7.1 Temperature and Power Dissipation 278 7.7.2 Electromagnetic Interference 278 7.7.3 Lightning Strikes 280 7.8 Bonding and Earthing 280 7.9 Signal Conditioning 282 7.9.1 Signal Types 282 7.9.2 Signal Conditioning 283 7.10 Central Maintenance Systems 284 7.10.1 Airbus A330/340 Central Maintenance System 285 7.10.2 Boeing 777 Central Maintenance Computing System 288 References 290 Further Reading 290 8 Sensors 291 8.1 Introduction 291 8.2 Air Data Sensors 292 8.2.1 Air Data Parameters 292 8.2.2 Pressure Sensing 292 8.2.3 Temperature Sensing 292 8.2.4 Use of Pressure Data 294 8.2.5 Pressure Datum Settings 295 8.2.6 Air Data Computers (ADCs) 297 8.2.7 Airstream Direction Detectors 299 8.2.8 Total Aircraft Pitot-Static System 300 8.3 Magnetic Sensors 301 8.3.1 Introduction 301 8.3.2 Magnetic Field Components 302 8.3.3 Magnetic Variation 303 8.3.4 Magnetic Heading Reference System 305 8.4 Inertial Sensors 306 8.4.1 Introduction 306 8.4.2 Position Gyroscopes 306 8.4.3 Rate Gyroscopes 306 8.4.4 Accelerometers 308 8.4.5 Inertial Reference Set 309 8.4.6 Platform Alignment 312 8.4.7 Gimballed Platform 315 8.4.8 Strap-Down System 317 8.5 Combined Air Data and Inertial 317 8.5.1 Introduction 317 8.5.2 Evolution of Combined Systems 317 8.5.3 Boeing 777 Example 319 8.5.4 ADIRS Data-Set 320 8.5.5 Further System Integration 320 8.6 Radar Sensors 323 8.6.1 Radar Altimeter 323 8.6.2 Weather Radar 324 References 327 9 Communications and Navigation Aids 329 9.1 Introduction 329 9.1.1 Introduction and RF Spectrum 329 9.1.2 Equipment 331 9.1.3 Antennae 332 9.2 Communications 332 9.2.1 Simple Modulation Techniques 332 9.2.2 HF Communications 335 9.2.3 VHF Communications 337 9.2.4 SATCOM 339 9.2.5 Air Traffic Control (ATC) Transponder 342 9.2.6 Traffic Collision Avoidance System (TCAS) 345 9.3 Ground-Based Navigation Aids 347 9.3.1 Introduction 347 9.3.2 Non-Directional Beacon 348 9.3.3 VHF Omni-Range 348 9.3.4 Distance Measuring Equipment 348 9.3.5 TACAN 350 9.3.6 VOR/TAC 350 9.4 Instrument Landing Systems 350 9.4.1 Overview 350 9.4.2 Instrument Landing System 351 9.4.3 Microwave Landing System 354 9.4.4 GNSS Based Systems 354 9.5 Space-Based Navigation Systems 354 9.5.1 Introduction 354 9.5.2 Global Positioning System 355 9.5.3 GLONASS 358 9.5.4 Galileo 359 9.5.5 COMPASS 359 9.5.6 Differential GPS 360 9.5.7 Wide Area Augmentation System (WAAS/SBAS) 360 9.5.8 Local Area Augmentation System (LAAS/LBAS) 360 9.6 Communications Control Systems 362 References 363 10 Flight Control Systems 365 10.1 Principles of Flight Control 365 10.1.1 Frame of Reference 365 10.1.2 Typical Flight Control Surfaces 366 10.2 Flight Control Elements 368 10.2.1 Interrelationship of Flight Control Functions 368 10.2.2 Flight Crew Interface 370 10.3 Flight Control Actuation 371 10.3.1 Conventional Linear Actuation 372 10.3.2 Linear Actuation with Manual and Autopilot Inputs 372 10.3.3 Screwjack Actuation 373 10.3.4 Integrated Actuation Package 374 10.3.5 FBW and Direct Electrical Link 376 10.3.6 Electrohydrostatic Actuation (EHA) 377 10.3.7 Electromechanical Actuation (EMA) 378 10.3.8 Actuator Applications 379 10.4 Principles of Fly-By-Wire 379 10.4.1 Fly-By-Wire Overview 379 10.4.2 Typical Operating Modes 380 10.4.3 Boeing and Airbus Philosophies 382 10.5 Boeing 777 Flight Control System 383 10.5.1 Top Level Primary Flight Control System 383 10.5.2 Actuator Control Unit Interface 384 10.5.3 Pitch and Yaw Channel Overview 386 10.5.4 Channel Control Logic 387 10.5.5 Overall System Integration 389 10.6 Airbus Flight Control Systems 389 10.6.1 Airbus FBW Evolution 389 10.6.2 A320 FBW System 391 10.6.3 A330/340 FBW System 393 10.6.4 A380 FBW System 394 10.7 Autopilot Flight Director System 396 10.7.1 Autopilot Principles 396 10.7.2 Interrelationship with the Flight Deck 398 10.7.3 Automatic Landing 400 10.8 Flight Data Recorders 401 10.8.1 Principles of Flight Data Recording 401 10.8.2 Data Recording Environments 403 10.8.3 Future Requirements 403 References 404 11 Navigation Systems 405 11.1 Principles of Navigation 405 11.1.1 Basic Navigation 405 11.1.2 Navigation using Ground-Based Navigation Aids 407 11.1.3 Navigation using Air Data and Inertial Navigation 408 11.1.4 Navigation using Global Navigation Satellite Systems 410 11.1.5 Flight Technical Error - Lateral Navigation 411 11.1.6 Flight Technical Error - Vertical Navigation 412 11.2 Flight Management System 413 11.2.1 Principles of Flight Management Systems (FMS) 413 11.2.2 FMS Crew Interface - Navigation Display 414 11.2.3 FMS Crew Interface - Control and Display Unit 417 11.2.4 FMS Functions 420 11.2.5 FMS Procedures 421 11.2.6 Standard Instrument Departure 423 11.2.7 En-Route Procedures 423 11.2.8 Standard Terminal Arrival Routes 424 11.2.9 ILS Procedures 427 11.2.10 Typical FMS Architecture 427 11.3 Electronic Flight Bag 427 11.3.1 EFB Functions 427 11.3.2 EFB Implementation 429 11.4 Air Traffic Management 430 11.4.1 Aims of Air Traffic Management 430 11.4.2 Communications, Navigation, Surveillance 430 11.4.3 NextGen 431 11.4.4 Single European Sky ATM Research (SESAR) 432 11.5 Performance-Based Navigation 433 11.5.1 Performance-Based Navigation Definition 433 11.5.2 Area Navigation (RNAV) 434 11.5.3 Required Navigation Performance (RNP) 438 11.5.4 Precision Approaches 440 11.6 Automatic Dependent Surveillance - Broadcast 442 11.7 Boeing and Airbus Implementations 442 11.7.1 Boeing Implementation 442 11.7.2 Airbus Implementation 444 11.8 Terrain Avoidance Warning System (TAWS) 444 References 447 Historical References (in Chronological Order) 447 12 Flight Deck Displays 449 12.1 Introduction 449 12.2 First Generation Flight Deck: the Electromagnetic Era 450 12.2.1 Embryonic Primary Flight Instruments 450 12.2.2 The Early Pioneers 451 12.2.3 The 'Classic' Electromechanical Flight Deck 453 12.3 Second Generation Flight Deck: the Electro-Optic Era 455 12.3.1 The Advanced Civil Flight Deck 455 12.3.2 The Boeing 757 and 767 456 12.3.3 The Airbus A320, A330 and A 340 457 12.3.4 The Boeing 747-400 and 777 458 12.3.5 The Airbus A 380 460 12.3.6 The Boeing 787 461 12.3.7 The Airbus A 350 462 12.4 Third Generation: the Next Generation Flight Deck 463 12.4.1 Loss of Situational Awareness in Adverse Operational Conditions 463 12.4.2 Research Areas 463 12.4.3 Concepts 464 12.5 Electronic Centralised Aircraft Monitor (ECAM) System 465 12.5.1 ECAM Scheduling 465 12.5.2 ECAM Moding 465 12.5.3 ECAM Pages 466 12.5.4 Qantas Flight QF 32 466 12.5.5 The Boeing Engine Indicating and Crew Alerting System (EICAS) 468 12.6 Standby Instruments 468 12.7 Head-Up Display Visual Guidance System (HVGS) 469 12.7.1 Introduction to Visual Guidance Systems 469 12.7.2 HVGS on Civil Transport Aircraft 470 12.7.3 HVGS Installation 470 12.7.4 HVGS Symbology 471 12.8 Enhanced and Synthetic Vision Systems 473 12.8.1 Overview 473 12.8.2 EVS, EFVS and SVS Architecture Diagrams 474 12.8.3 Minimum Aviation System Performance Standard (MASPS) 474 12.8.4 Enhanced Vision Systems (EVS) 474 12.8.5 Enhanced Flight Vision Systems (EFVS) 478 12.8.6 Synthetic Vision Systems (SVS) 481 12.8.7 Combined Vision Systems 484 12.9 Display System Architectures 486 12.9.1 Airworthiness Regulations 486 12.9.2 Display Availability and Integrity 486 12.9.3 Display System Functional Elements 487 12.9.4 Dumb Display Architecture 488 12.9.5 Semi-Smart Display Architecture 490 12.9.6 Fully Smart (Integrated) Display Architecture 490 12.10 Display Usability 491 12.10.1 Regulatory Requirements 491 12.10.2 Display Format and Symbology Guidelines 492 12.10.3 Flight Deck Geometry 492 12.10.4 Legibility: Resolution, Symbol Line Width and Sizing 494 12.10.5 Colour 494 12.10.6 Ambient Lighting Conditions 496 12.11 Display Technologies 498 12.11.1 Active Matrix Liquid Crystal Displays (AMLCD) 499 12.11.2 Plasma Panels 501 12.11.3 Organic Light-Emitting Diodes (O-LED) 501 12.11.4 Electronic Paper (e-paper) 502 12.11.5 Micro-Projection Display Technologies 503 12.11.6 Head-Up Display Technologies 504 12.11.7 Inceptors 505 12.12 Flight Control Inceptors 506 12.12.1 Handling Qualities 507 12.12.2 Response Types 507 12.12.3 Envelope Protection 508 12.12.4 Inceptors 508 References 509 13 Military Aircraft Adaptations 511 13.1 Introduction 511 13.2 Avionic and Mission System Interface 512 13.2.1 Navigation and Flight Management 515 13.2.2 Navigation Aids 516 13.2.3 Flight Deck Displays 517 13.2.4 Communications 518 13.2.5 Aircraft Systems 518 13.3 Applications 519 13.3.1 Green Aircraft Conversion 519 13.3.2 Personnel, Material and Vehicle Transport 521 13.3.3 Air-to-Air Refuelling 521 13.3.4 Maritime Patrol 522 13.3.5 Airborne Early Warning 528 13.3.6 Ground Surveillance 528 13.3.7 Electronic Warfare 530 13.3.8 Flying Classroom 530 13.3.9 Range Target/Safety 530 Reference 531 Further Reading 531 Appendices 533 Introduction to Appendices 533 Appendix A: Safety Analysis - Flight Control System 534 A. 1 Flight Control System Architecture 534 A. 2 Dependency Diagram 535 A. 3 Fault Tree Analysis 537 Appendix B: Safety Analysis - Electronic Flight Instrument System 539 B. 1 Electronic Flight Instrument System Architecture 539 B. 2 Fault Tree Analysis 540 Appendix C: Safety Analysis - Electrical System 543 C. 1 Electrical System Architecture 543 C. 2 Fault Tree Analysis 543 Appendix D: Safety Analysis - Engine Control System 546 D. 1 Factors Resulting in an In-Flight Shut Down 546 D. 2 Engine Control System Architecture 546 D. 3 Markov Analysis 548 Simplified Example (all failure rates per flight hour) 549 Index 551

Back

University of the Highlands & Islands logo